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a b s t r a c t

A laser rotary-scanning measurement system was developed for the reverse engineering of
360� objects. The system is constructed by an optical head and a rotary indexing. The opti-
cal head is composed of a laser diode strip-light projector and dual CCD cameras. Based on
the principle of structured-light triangulation, a laser line is projected onto the object upon
which the distorted line is captured by dual CCD cameras from left and right simulta-
neously. By processing a series of line fittings from the discrete angular positions of an
object, the entire 3D profile can be reconstructed. Since the actual space coordinates of
the object are computed according to the geometric relationship between the coordinate
of optical head system and the coordinate of the rotary indexing systems, if these two coor-
dinate systems are not in good alignment, errors in the computed coordinates will be intro-
duced.

This paper describes the influences of the alignment and eccentricity errors of the laser
rotary-scanning measurement system on the computed geometrical profile. Calibration
procedures are then proposed to adjust the alignment to avoid image distortions and thus
enhance the system accuracy. Experimental results show that this easy-to-use calibration
procedure can significantly improve the accuracy of the system.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

In general, the 3D surface profile of an object can be ac-
quired by using a non-contact laser scanning measurement
system [1–3]. However, when measuring an object that has
a large surface, large curvature, or a full 360� profile, one
can acquire only one set of sectional measurement points
in each measurement. For reconstructing the entire object,
every set of sectional measurement points acquired at dif-
ferent positions must match with one another [4–8].
Therefore, the optimal shape error analysis for the match-
ing images of the same area for two sets of sectional mea-
surement surfaces is desired. In practice; however, this is
tedious and time consuming.
. All rights reserved.
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For a smooth object having 360� shape, e.g., circular shaft,
human sculpture or club head, one can acquire the entire
profile through line-by-line increments using a rotary mea-
surement system. Chang proposed a neural network algo-
rithm to measure a 360� profile of an object [9]. Using the
laser rotary-scanning measurement system, the processes
of sectional scanning and image matching as described
above can be avoided. Measurement time can also be saved.
But the coordinates of this measurement system must be
calibrated to avoid image distortions, and thus to enhance
the system accuracy. In this paper, we proposed an easy-
to-use calibration procedure to solve this problem and to
adjust the alignment to avoid image distortions.

The schematic diagram of a laser rotary-scanning mea-
surement system is illustrated in Fig. 1. The coordinate sys-
tem of the laser rotary-scanning measurement is an actual
space coordinate system (X,Y,Z); the original point of ac-
tual space coordinate system coincides with the center of
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Fig. 1. Schematic diagram of a laser rotary-scanning measurement
system.
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the rotary table, and the direction of Y-axis is outward
from the paper. The laser scanning probe projects a strip-
light onto the object. A CCD camera can then capture the
image of the deformed line. The coordinates of the
deformed images could be transformed into the related
space coordinates of the object according to the mapping
function, which is acquired by using a pre-calibration
procedure. By processing a series of laser strip images from
the discrete angular positions of an object, the entire 3D
profile can be reconstructed. Discussions on the alignment
errors and accuracy calibration issues for this measure-
ment system have not been found in any literature yet.
In this paper, we investigate the errors of a laser rotary-
scanning measurement system and propose a calibration
procedure for the measurement system to improve its
measuring accuracy.
2. The geometric principles of the rotary measurement
system

Fig. 2 shows the geometric relationship of the rotary
measurement system. The Y-axis direction is outward from
the paper. Let P(x,y, z) be a point of the object in the actual
space coordinates, and O(0, 0, 0) be the center of this actual
space coordinates. Angle h is the clockwise rotation angle
of the rotary table of each step. The value (y0, z0) indicates
the computed coordinate for a point on the section line,
which is a line on the Y–Z plane that crosses the object,
and there x0 equals zero. Each deformed image that the
CCD captures indicates the information of a section line.
Fig. 2. The geometric principles of a rotary measurement system.
According to the mapping function, we can calculate the
computed space coordinates of the section line, but they
are not the actual space coordinates of the object. For
acquiring the actual space coordinates, the computed
space coordinates (y0, z0) must be transformed into the
actual space coordinates P(x, y, z). The geometric relation-
ship between the rotary position and the space coordinate
must be considered. The transformation equations of the
computed coordinate (y0, z0) and the actual space coordi-
nate P(x, y, z) are shown as follows:

x ¼ z0 sin h

y ¼ y0

z ¼ z0 cos h

8><
>:

ð1Þ

From Eq. (1), the actual space coordinates of the object
are determined according to a trigonometric function. The
accuracy of the actual space coordinates P(x, y, z) depend
on the geometric relationship between the laser rotary-
scanning measurement system and the rotary system. If
these coordinate systems do not coincide, errors of com-
puted coordinate would be obtained from Eq. (1).

3. Error analysis of the coordinate system deviations

From the above descriptions, the actual space coordi-
nates of the object can be determined by using Eq. (1).
Here, we assume that the position of the center of the
rotary table is located exactly at the center of the actual
space coordinates, and the normal direction of the rotary
table coincides with the Y-axis of the actual space coordi-
nates. In practice, these two assumptions are not always
satisfactory. There exist a few physical deviations between
the rotary system and the actual space coordinate system.
These deviations will induce computing errors.

3.1. The error caused by the inclined axis of the rotary table

For simplicity of descriptions, the analysis of the error
caused by the inclined angle of the rotary table will be
divided into two special conditions. One is that the axis
of the rotary table exactly lies on the X–Y plane of the
actual space coordinates but has an inclined angle b with
respect to Y-axis. The other is that the axis of the rotary
table exactly lies on the Y–Z plane of the actual space coor-
dinates but has an inclined angle c with respect to Y-axis.
The transformation equations of two special conditions
are described respectively as follows.

If the axis of the rotary table exactly lies on the X–Y
plane of the actual space coordinates but has an inclined
angle b with respect to Y-axis, the coordinate system XYZ
is rotated through an inclined angle b about Z axis. The
new coordinate system can be defined as X�bY�bZ�b. The rota-
tion matrix can be written as Mb. The measured point
(0, y0, z0) is rotated about the axis of the rotary table ðY�bÞ
through an angle h to a new position. The rotation matrix
can be written as (Mb)h. The inclined coordinate system
X�bY�bZ�b is returned to the original XYZ coordinate system
by the inverse matrix M�1

b . Then the transformation equa-
tions of the computed coordinate (0, y0, z0) and the actual
space coordinate P(x, y, z) are shown as follows:



Fig. 3. The center of the rotary table deviations.
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Therefore, when we substitute the rotation matrices Mb,
(Mb)h and M�1

b into Eq. (2), the transformation equations of
the computed coordinate can be acquired by

x ¼ y0 cos b sin bðcos h� 1Þ þ z0 cos b sin h

y ¼ y0ðsin2 b cos hþ cos2 bÞ þ z0 sin b sin h

z ¼ �y0 sin b sin hþ z0 cos h

8><
>:

ð4Þ

Furthermore, if the axis of the rotary table exactly lies
on the Y–Z plane of the actual space coordinates but has
an inclined angle c with respect to Y-axis. Similar to the
description as above, the coordinate system XYZ is rotated
through an inclined angle c about Y axis. The new coordi-
nate system can be defined as X�cY�cZ�c. The rotation matrix
can be written as Mc. The measured point (0, y0, z0) is
rotated about the axis of the rotary table ðY�cÞ through an
angle h to a new position. The rotation matrix can be writ-
ten as (Mc)h. The inclined coordinate system X�cY�cZ�c is re-
turned to the original XYZ coordinate system by the
inverse matrix M�1

c . Then the transformation equations of
the computed coordinate (0, y0, z0) and the actual space
coordinate P(x, y, z) are shown as follows:

x
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Therefore, when we substitute the rotation matrices Mc,
(Mc)h and M�1

c into Eq. (4), the transformation equations of
the computed coordinate can be acquired by

x ¼ �y0 sin c sin hþ z0 cos c sin h

y ¼ y0ðsin2 c cos hþ cos2 cÞ þ z0 cos c sin cð1� cos hÞ
z ¼ y0 cos c sin cð1� cos hÞ þ z0ðsin2 cþ cos2 c cos hÞ

8><
>:

ð7Þ

Briefly, the actual space coordinate P(x, y, z) depends
upon the point position of the object (y0, z0) and the in-
clined angle of the axis of the rotary table (b, c). In fact, if
the axis of the rotary table neither lies on the X–Y plane
nor on the Y–Z plane of the actual space coordinates and
has an inclined angle with respect to Y-axis. The transfor-
mation equations of the computed coordinate (y0, z0) and
the actual space coordinate P(x, y, z) will be more compli-
cated. Under different inclined conditions of the axis of
the rotary table, the transformation equations of the actual
space coordinates are different.

Of course, the inclined angle can be obtained by appro-
priate measurement equipments, and then it can be cali-
brated. However, some measurement equipments are
needed to measure inclined angle, and a calibration proce-
dure is also needed to complete the calibration. This work
is tedious and time consuming. In this paper, we proposed
an easy-to-use calibration procedure to solve this problem
and to adjust the alignment to avoid image distortions.

3.2. The error caused by the eccentricity of the rotary center

Fig. 3 shows the case that the center of the rotary table is
not located exactly at the center of the actual space coordi-
nates O(0, 0, 0). In Fig. 3, the coordinate system of the laser
rotary-scanning measurement is actual space coordinate
system (X, Y, Z), and (X�, Y�, Z�) is the coordinate system of
the center of the rotary table. While the direction of Y or Y�

axis is outward from the paper. Let Q(x, y, z) be an actual
space coordinate of the object, and P(x, y, z) is a computed
space coordinate according to the measured point R(0, y0, z0).
While (dx, dz) indicates the eccentricity of the center of the
rotary table in the X and Z direction, respectively. From
Fig. 3, the actual space coordinate Q(x,y,z) can be deter-
mined as follows:

Qðx ; y ; zÞ
x ¼ L0 sinðh� aÞ þ dx

y ¼ y0

z ¼ L0 cosðh� aÞ þ dz

8><
>:

ð8Þ

According to the measured value ðy0; z0Þ, the computed
coordinate pðx ; y ; zÞ can be acquired by

Pðx; y; zÞ
x ¼ ðLþ dzÞ sin h

y ¼ y0

z ¼ ðLþ dzÞ cos h

8><
>:

ð9Þ

where L0 ¼ L= cosa. Then the eccentric errors Ex and Ez be-
tween the actual space coordinate and computed coordi-
nate in the X and Z directions are:
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Fig. 4. The flow chart of the calibration procedure.
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Ex ¼ ðLþ dzÞ sin h� ½L0 sinðh� aÞ þ dx�
¼ dz sin hþ dxðcos h� 1Þ ð10Þ

Ez ¼ ðLþ dzÞ cos h� ½L0 cosðh� aÞ þ dz�
¼ �dx sin hþ dzðcos h� 1Þ ð11Þ

Eqs. (8) and (9) can be rewritten as:

Ex ¼ R sinðhþ /Þ � dx

Ez ¼ R cosðhþ /Þ � dz
ð12Þ

where tan / ¼ dx=dz, and R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

x þ d2
z

q
.

If translates the computed coordinate with distance
(dx, dz), then Eq. (10) would be changed to:

E0x ¼ R sinðhþ /Þ
E0z ¼ R cosðhþ /Þ

ð13Þ

And

E02x þ E02z ¼ R2 ð14Þ

From Eq. (11), we can see that each point of the object
on the X–Z plane has the same distance error to the center
of the rotary table. Due to the deviations in the center of
the rotary table (dx, dz), the object profile will expand or
shrink its geometrical shape. A measurement error will
be induced causing deviations in the center or incline axis
system. The causes of this measurement error are due to dx,
dz and the inclined angles of the system. Therefore, the
measurement system should be calibrated to improve the
measurement accuracy.
4. The calibration principle and procedures for rotary
measurement system

Measurement errors are caused by the eccentricity and
the inclined angles of the center of the rotary table. The
relationships between these error terms are non-linear. It
is difficult to acquire each error term in a simple and effi-
cient manner. Here, we propose a simple calibration proce-
dure to enhance the accuracy of the system. The calibration
procedure is divided into two steps. The first step is the
inclination calibration and the second the eccentricity
calibration. The flow chart of the calibration procedure is
shown in Fig. 4. The calibration procedure will be
described in detail from Section 4.1 to Section 4.2.

4.1. Inclination calibration

The laser scanning probe projects a vertical laser strip
onto the object. Since the Y-axis of the space coordinate
is defined in the vertical direction. For calibrating the nor-
mal direction of the rotary plane coincident to the Y-axis, a
leveling adjustment is executed alternately with two
perpendicular directions for the laser scanning probe and
the rotary table planes until they are within 1 arcsec toler-
ance using an electronic level. Therefore, the problem of
determining the system inclined angle can be solved in a
simple and efficient way by using the inclination calibra-
tion as shown here.
4.2. Eccentricity calibration

After completing the inclination calibration, a cylinder
with known radius R is adopted to test the eccentricity of
the center position of the rotary indexing. The procedure
is described as follows:
4.2.1. The centering calibration of cylinder and rotary table
As shown in Fig. 5, the cylinder is placed in the center of

the rotary table. A dial indicator with 1 lm resolution
touches the cylinder at A and resets in the X direction. The
rotary table then rotates 180� and the cylinder is adjusted
one half of the deviation indicated on the dial indicator
along the inverse direction. The procedure is repeated until
the deviation is within 0.01 mm tolerance. And then, the cal-
ibration procedure of Z direction is the same as the calibra-
tion procedure of X direction.
4.2.2. X direction deviation calibration
When the center of the cylinder coincides with the cen-

ter of the rotary table, the center position of the rotary ta-
ble can be determined easily by scanning the cylinder and
using the laser scanning probe. The laser scanning probe
scans the cylinder linearly from left to right with a pitch
of 1 mm along the X direction, as shown in Fig. 6. However,
in this calibration procedure, the scan data are limited to a
small and short arc, so if we use these measurement data
to fit the circle equation of the cylinder cross-section arc
directly, the curve fitting error will be very large and the
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Fig. 7. Schematic diagram of polynomial curve fitting for calibration X
direction deviation.

Table 1
Scanning head specifications of measurement system.

Lowest Highest
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calibration accuracy of X-direction deviation will not be
good enough. Since the scan data is only required to find
the vertex of the curve and the vertex vicinity of the poly-
nomial fitting curve coincides with the circular curve.
Therefore, we use a polynomial approximation to fit the
circle curve for calibrating the X-direction deviation. Let
the initial position be x = 0, and then a set of the average
z0 values and the corresponding x value of each step can
be acquired. Because the equation of a circle is a polyno-
mial function of order 2, therefore, a polynomial function
of order 2: z0 ¼ ax2

i þ bxi þ c can be used to fit the cylinder
cross-section arc. If the least-squares method is used, the
coefficient of curve fitting functions a–c can be deter-
mined. Therefore, the vertex of the polynomial function
is located at x ¼ �b=2a. Fig. 7 shows the schematic dia-
gram of polynomial curve fitting for calibration X direction
deviation. Since the vertex vicinity of the polynomial fit-
ting curve coincides with the circular curve, and the center
of the rotary table passes through the vertex of the polyno-
mial fitting curve, moving the laser scanning probe to the
vertex position (x = �b/2a) will initiate the X direction
deviation calibration. Briefly, the X-direction deviation is
obtained by using curve fitting method, and then the accu-
racy will be higher than that by calibrating the radius error
of cylinder directly.
Magnification 0.071� 0.50�
Field of view 67.4 mm � 89.8 mm 9.5 mm � 12.6 mm
Depth of field 30 mm 2.7 mm
Working distance 350 mm 350 mm
4.2.3. Z direction deviation calibration
Since the projected laser line passes through the center

of the rotary table and coincides with the normal direction
of the rotary table plane, the deviation of dz can be deter-
mined by measuring the average value z0 of the cylinder
on the Y–Z plane. The deviation is then equal to the prod-
uct from subtracting the radius of the cylinder from z0. If
the deviation ‘‘dz’’ is positive, then the rotary table is
moved back by dz. Inversely, the rotary table is moved for-
ward by dz and the measurement system calibration is
completed.
5. The practice of calibration and experimental results

In this paper, the scanning head of this laser rotary-
scanning measurement system adopts a laser diode projec-
tor and dual CCD cameras attached with an OPTEM ZOOM
70 with a 0.38� TV tube and 0.25� auxiliary lens. This
optical scanning probe is mounted on a linear stage to exe-
cute line scanning measurement. The resolution of CCD
camera is 768 � 494 picture element [8]. Table 1 lists the
specifications of this system performance. Experimental
measurement results show that the system accuracy is
about 0.05 mm and 0.06 mm in the Y-axis and Z-axis direc-
tion at the original focus position respectively.

To investigate the calibration procedure of measure-
ment system, we adopted a cylinder that has a radius of
26.930 mm to execute the calibration procedure. The incli-
nation calibration and cylinder centering are executed first.
The cylinder is then scanned from left to right with a pitch
of 1 mm and the vertex position of the polynomial function
is calculated by using the least-squares method. The result
of vertex position was 14.25 mm and then the laser scan-
ning probe was moved by 14.25 mm along the X-axis



Fig. 8. The line segments of the measured data for the cylinder.

Fig. 9. The prototype picture of a marmot toy.

Fig. 10. The measured data from a toy using a rotary measurement
system without calibration.

Fig. 11. The entire line segments from the measured data for the toy
using a calibrated measurement system.
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direction to finish the X direction calibration. Next, mea-
sure the average distance z0 of the cylinder. The result
was 27.346 mm and the deviation of dz was 0.416 mm. Be-
cause dz was positive, the rotary table is moved back by
0.416 mm and the average distance of the cylinder is
measured again. The result was 26.941 mm, and the radius
error was 0.011 mm. Since the accuracy of this laser ro-
tary-scanning measurement system is 0.05 mm. Therefore,
the calibration procedure has now been accomplished.

Using a measurement system calibrated to scan the cyl-
inder with a rotation angle of 2� per step of the rotary table,
the total number of scanned lines was 180. Fig. 8 shows the
line segments of the measured data. The result of the mea-
sured diameter for the cylinder was 53.921 mm and the
diameter error was 0.061 mm. This reveals that the calibra-
tion procedure we proposed works very well and the accu-
racy is satisfactory.
Subsequently, a marmot toy was measured by using a
rotary measurement system without and with calibration,
respectively. Fig. 9 shows a prototype picture of a marmot
toy. Fig. 10 presents the set of measured data using a rotary
measurement system without calibration. From Fig. 10, if
the measurement system is not calibrated, it apparently
reveals an enlargement distortion of the object compared
to the prototype. However, the marmot toy was measured
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by using the calibrated measurement system. The entire
line segments of the measured data are shown in Fig. 11.
From Fig. 11, if the measurement system is calibrated,
the set of measured data is more accurate in comparison
with the measured data without calibration (Fig. 10).

6. Conclusion

A laser scanning probe can be used to project structured-
light onto an object to allow image capture by a CCD camera.
By processing a series of laser strip images from the discrete
angular positions of an object, the entire 3D profile can be
reconstructed. This measurement system is convenient
and easy to operate. The measured data depends on the geo-
metric relationship between the measurement and rotary
systems. For acquiring reliable measured data, the measure-
ment system must be calibrated.

In this paper, we describe the errors from a laser rotary-
scanning measurement system that are induced by the
deviations in the rotary table coordinates. From the error
analysis descriptions, for different alignment or eccentric-
ity errors of the axis of the rotary table, the transformation
equations of the actual space coordinates are different.
Unfortunately the alignment errors of the axis of the rotary
table are unknown, and the causes for these deviations are
so complex that one cannot determine all of the causes by
using a simple method or procedure. To eliminate the
deviations simply and improve the measurement accuracy
efficiently, we proposed a calibration procedure for adjust-
ing the coordinate alignment and the eccentricity of the ro-
tary center separately. Experimental results show that this
calibration procedure can be easily executed. The devia-
tions can be acquired and adjusted and the accuracy of
the system can be improved.
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